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Abstract--The convection-diffusion equation is present in the formulation of many petroleum reservoir 
engineering problems. A representative example, the tracer injection problem, is solved analytically here, 
through the generalized integral transform technique so as to illustrate the usefulness of this approach, for 
this class of problems. Classical assumptions, such as steady-state single phase flow and unit mobility ratio, 
are adopLed. Comparisons with alternative analytical (when available) or numerical (finite difference) 

solutions are performed and benchmark results are established. 

INTRODUCTION 

Various physical situations of engineering interest 
are modelled by means of the convection-diffusion 
equation. Approximate analytical or purely numerical 
approaches are frequently used to solve this equation, 
since the conventional analytical methods may be 
employed only in very simple cases. However, the 
ideas in the so-called generalized integral transform 
technique (GITT) [1] can be used to develop analytical 
or hybrid (numerical-analytical with prescribed accu- 
racy, i.e. computationally exact) solutions for both 
benchmark purposes and direct engineering appli- 
cation. Convection-diffusion problems have already 
been treated through the GITT for one-dimensional 
transient formu]iations (viscous linear and non-linear 
Burgers' equation) and multidimensional steady-state 
applications [2--4]. These exploratory studies were 
aimed at increasing the knowledge basis for more 
involved applications like the one to be discussed here. 

In petroleum reservoir engineering many phenomena 
are governed by the convection~liffusion equation 
and one of the most representative problems is that 
related to tracer transport. Tracers have been injected 
in underground porous media since the beginning of 
this century in o:rder to extract qualitative information 
about flow barriers, directional flow trends, com- 
munication between reservoirs, and so on. However, 

t Author to whom correspondence should be addressed. 

it is possible to extract quantitative information if one 
has an adequate model of the tracer transport and the 
features of the reservoir, and a reliable way of solving 
it. 

Tracer transport in a petroleum reservoir is basi- 
cally subjected to convection (bulk movement of fluids 
caused mainly by the injection and the production 
wells) and mechanical dispersion along the main flow 
direction (longitudinal mixing) [5, 6]. This leads to the 
use of the convection~liffusion (dispersion) equation 
and, depending upon the ratio of convective to diffu- 
sive (dispersive) contributions to tracer transport, its 
behavior ranges from parabolic to almost hyperbolic, 
and such a wide range of practical situations brings 
up a serious difficulty in the application of purely 
numerical methods. 

In this first application of the GITT in petroleum 
reservoir problems, the two-dimensional tracer equa- 
tion is solved for a fully developed five-spot pattern, 
i.e. an infinite array of injection and production wells 
arranged as shown in Fig. 1. From symmetry con- 
siderations one can observe that the five-spot pattern 
may be reproduced by the repetition of a single cell. 
For  the present purposes, a convenient choice of such 
a cell is illustrated in Fig. 1, with the associated coor- 
dinate system. Classical assumptions are adopted, 
including horizontal, homogeneous and isotropic 
reservoir, incompressible single phase steady-state 
flow, unit mobility ratio and ideal tracer (no adsorp- 
tion, chemical reaction or radioactive decay). 
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NOMENCLATURE 

a distance between like wells [m] q 
B coefficients matrix of the ordinary 

differential equations (ODE) system [s- J] 
C concentration [kg m 3] Q 
C~ concentration of species one [kg m 3] 
C~ concentration of species one for the 

slug injection problem [kg m -3] tinj 
C~,. transformed potential (concentration) u 

associated with the ith eigenvalue in the uo 
x direction, and with the mth 
eigenvalue in the y direction [kg m 3] ux 

C~nj injection concentration [kg m -3] 
Cm average potential (concentration) over uj. 

the whole domain [kg m -3] 
CN normalized concentration 

[dimensionless] 
Cp steady-state solution of the 

concentration equation [kg m -3] 
Cprod concentration at the production wells 

[kg m-  3] 
Ct transient solution of the concentration 

equation after extraction of steady-state 
solution [kg m -3] 

d distance between unlike wells [m] 
fvP tracer slug volume, fraction of pore 

volume 
h reservoir thickness [m] 
k permeability [m 2] 
K dispersion-diffusion tensor [m 2 S-1] ~Orn 
M,. ruth norm in the y direction [m] 
Ni ith norm in the x direction [m] ¢ 
p pressure [Pa] ~ki 
Pe Peclet number ( = a/a) [dimensionless] 

injection or production rate into the 
five-spot unit (one-quarter of the total 
well rate) [m 3 s-;] 
source term, in the continuity 
equation, corresponding to the wells 
[ s - ' ]  
injection time [s] 
Darcy's velocity [m s-i] 
characteristic (Darcy's) velocity 
[m s l] 
Darcy's velocity component in the x 
direction [m s ~] 
Darcy's velocity component in the y 
direction [m s 1]. 

Greek symbols 
dispersivity [m] 

6(...) Dirac's delta function [m -]] 
6ik Kronecker's delta 

c0 /th eigenvector of matrix B Is] 
2,. mth eigenvalue in the y direction [m -z] 
# viscosity [Pa s] 
#~ ith eigenvalue in the x direction [m -2] 
vt lth eigenvalue of matrix B [s J] 
cr~ lth coefficient in the linear combination 

of elementary solutions of the ODE 
system (21) [kg m -3 s -l] 
mth eigenfunction in the y direction 
[dimensionless] 
porosity [dimensionless] 
/th eigenfunction in the x direction 
[dimensionless]. 

O O O O O 
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N #  o © © 

N N "o, 
0 0 0 0 0 

O = PRODUCTION WI::LJ_ 

" ~  = INOEOnON WELL 

Fig. 1. Geometry and coordinate system for the five-spot 
pattern. 

PROBLEM FORMULATION 

Flow f ie ld  
Since the tracer transport phenomena depend upon 

the velocity field imposed by the injection and pro- 
duction wells, it is then necessary to determine such a 
flow field a priori, recalling that this is a steady-state 
flow system. 

For the present case, the continuity equation may 
be expressed as : 

v . ,  = Q(x,y) ( l )  

where Q(x,  y) takes into account the sources (injection 
wells) and the sinks (production wells). Assuming that 
the wells can be reduced to line sources/sinks and 
using the cell and coordinate system presented in Fig. 
1, one obtains [7] : 

y) = q [6(x)a(y -- d) + 6 ( x -  d)a(y)  - 6(x)a(y)  Q(x, 
n 

-a(x-a)a(y-a)]. (2) 
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Darcy 's  law relates velocity and pressure fields as 
follows : 

k 
u = - - V p .  ( 3 )  

# 

Therefore, combining equation (1)-(3), one finds: 

d2p + 02p k: hq[6(x)f(Y-d) 
63X 2 63y 2 k 

+ 6(x-- d)f(y) - 6(x)f(y) - 6 ( x -  d )6 (y -  d)l 

O < x < d , O < y < d .  (4a) 

Symmetry cortsiderations lead to the adopt ion of 
no-flow boundary  conditions, i.e. recalling Darcy 's  
law : 

~p 
!gP = ~x ~=d = 0 (4b) 
i?x x=0 

:~P = ~_P = 0. (4c) 
'3Y y= 0 ~y y~d 

By solving equation (4) one obtains the pressure field, 
and after applyJing Darcy 's  law [equation (3)], the 
velocity field can be evaluated. 

Concentration field 
The mass conservation of the tracer may be 

described as [8] 

@ ~ t  1 + V - ( u C I ) - V ' [ K V C t ]  = CiQ(x,y) (5) 

where K is a diffnsion-dispersion tensor, with its com- 
plete form given, for example, by Lake [8]. Here, for 
the sake of  simplicity, a diagonal  tensor was assumed 
as 

Kxx = ~luxl Kyy = ~lu~l and Kxy : Ky  x = 0 

(6) 

where the longkudinal  dispersivity constant,  a, is a 
proper ty  of  the porous medium. 

Therefore, equation (5) is rewritten as 

oOC, __~x(aluxlOC,\ O 0 j 

+ (,,yc,) = c,,,j d) + d)6(y)]  

-- q C, [6(x)6(y) + 6 ( x -  d )6 (y -  d)] 

0 < x < d ,  0 < y < d ,  t > 0  (7a) 

where the concentrat ion being injected at the injection 
wells has a known prescribed value (equal to Ci~j). 

Assuming that  there is initially no tracer within 
the medium and considering the no-flow boundary 
conditions, one ,:an state : 

C, (x,y, 0) = 0 (7b) 

~C1 x=0 OCi x=d Ox = dx = 0 (7c) 

OC1 y=0 c~Cl y=a ~3y - 0y = 0. (7d) 

Equations (7) involve the assumption of  continuous 
tracer injection. The case of  slug tracer injection can 
be solved by superposit ion or, in a more general form, 
considering that equation (7) holds for t < ti,j, and, 
after this time, then they hold setting Ci,j = 0 in equa- 
tion (7a) and assuming, as an initial condition, the 
concentration distr ibution already obtained at  t = ti,j. 

SOLUTION METHODOLOGY 

Flow field 
System (4) can be solved through conventional ana- 

lytical methods. Almeida [9] solved it through the 
classical integral t ransform technique, obtaining 

16/~ ~ ~ 
p ( x, y ) - ~ ~-h q r~= O s~= O 

cos [(2r+ 1)(hid)x] cos [(2s+ 1)(n/d)y] 
× (8) 

(2 r+  1)2 + (2s+ 1) 2 

Applying Darcy 's  law [equation (3)], it then follows 
that  : 

16 ~ ~ (2 r+  1) 
Ux (X, y )  = --  - ~  q ,.~=o s~=o (2r + 1) 2 q- (2s + 1) 2 

16 ~ ~ (2s+ 1) 

uy (x, y) = - ~ q r=~0 s~0 (2r + 1) 2 + (2S + 1) 2 

XCOS 2 r + l  x sin 2 s + l  y . (9b) 

Expressions (8) and (9) may present a slow con- 
vergence behavior. It is possible, however, to improve 
such convergence [1, 10, 11], though not  necessary, 
since the objective in the present analysis is the solu- 
tion of the concentrat ion equation, equation (7), not  
the calculation of the pressure or velocities themselves. 

Concentration field 
Alrneida [9] developed an analytical solution to sys- 

tem (7) through the GITT approach.  This procedure 
is summarized here as follows. 

First  of all, the steady-state solution is separated to 
improve the overall convergence behavior, in the form 

C1 (x,y, t) = Cp(x,y) + Ct(x,y, t) = Cinj + Ct(x,y, t). 

(10) 

Substituting equation (lO) into equations (7), making 
use of  equation (4a), separating a 'characteristic dis- 
persion'  au0, and finally rearranging, results in : 
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0 OC t ~2C t ~2C t 
C(Uo ~t c~x 2 63y 2 

l h Ct [6(x)a(y) -~- (~(x-- d ) a ( y -  d)] 
~Uo 

L[(I. I  ec,1 i k[U c, l 
+ axL\ uo -1) -&; j - ;  axL. ° j 

[U'c  e [ ( l ' l - 1  - ( 1 1 )  

+~LkUo ~aykuo J" 

Then, the following auxiliary problems are chosen : 

dRq~(x) +p~W,(x) = 0 i = 0, 1,2,3 . . . .  (12a) 
dx ~ 

dtFi dtIt i 
dx x=0 = dx x=d = 0 (12b) 

and 

d2~°'(Y) +22q~,,(y) = 0  m =0,1,2,3 . . . .  (13a) 
dy 2 

dy . - dy y=d = 0  
(13b) 

which are readily solved to yield the related eigen- 
functions, eigenvalues and norms as ¢~(x) = cos (#~x), 
q)m(Y) = COS (2my), ]A i = in/d (i = O, 1,2 . . . .  ), 
2~ = mn/d (m = O, 1, 2 . . . .  ), No = Mo = d, 
N~ = M,, = d/2 (i, m ~ 0). 

Problems (12) and (13) allow for the establishment 
of the following integral transform pair : 

Transform 

tim(t) = I d IdYll(X) q)m(Y)~, t)dxdy. (14a) 
Jo Jo N] i: M~/~ ~t~x'Y' 

Inversion 

Ct(x,y,t ) = ~ ~ ~i(x) q)m(Y) fim(t ). (14b)  
i=o.,=o N]/2 M 1/2 

Integrating equation (11) over the region 0 ~< x ~< d, 
0 ~< y ~< d and 0 ~< z ~< h, and defining the average 
potential as 

1 ?f F 
Cm(t) = ~ J 0  Jo ,]0 Ct(x'Y' t )dxdydz (15) 

the differential equation for the average potential is 
obtained as 

dCm 2q 
- -  C t ( 0 ,  0 ,  t )  ( 1 6 a )  

dt OdZh 

Crn(0) = --  f in  j, (16b)  

Substituting equation (14b) into equation (15), one 
obtains 

Coo(t) 
Crn (t) - d (17) 

that is, the average potential is related to the first 
transformed potential Coo (i = m = 0) and equation 
(16) is an independent relation to calculate it. 

Then, separating the average potential, i.e. making 
in equation (11), 

C j x ,  y , t )  = Cm( t )+C(x ,y , t )  (18) 

one obtains 

q~ g C  • d C  m 02C 02C I 
q 

C~Uo Ot ~Uo dt ~x 2 Oy z 7Uo 

x h Cm[fi(x)6(y-d)  + b ( x - d ) 6 ( y ) ]  

1 
q c[a(x)a(y) + a(x- d)a(y- d)] 

~Uo n 

q 1 ±r. g 
+ Tx L\ Uo ]-&x I -  ~ Ox Luo J 

~?Y L \  Uo ] ~ y l  ~ ~ c (19a) 

C(x, y, 0) = 0 (19b) 

OC 
~ x = 0  = = 0 (19c) 7x x ~ d  

6C 
~y=o  = = 0. (19d) 

y=d 

Following the formalism [1] in the GITT,  we oper- 
ate the differential equation and the initial condit ion 
in system (19) with 

fo d i d ~,(x)  ~om(y) , . 
Jo N 9  Gxuy 

and, making use of the auxiliary problems (12) and 
(13), 

d C ~ , .  2 2 - 1 
O~Uo dt +(I.ti +2m)Cim -- ~Uo 

q Coo [ ( - - l Y + ( - - 1 )  m] 
x -  

h d N]/EM~/2 

1 qfffiOi(x)~om(y) 
~Uo h N]/2 Mlm/2 

x [6(x)6 (y) + 6 (x--  d ) 6 ( y -  d)] C dx dy 

+Jo Jo N]/2 Mira/2 ax  L \  Uo 

aJO JO N]/2 M 1/2 
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Idld~i(X) qg"(Y) ~-- [ ( lUyl_l)~-- f]dxdy 
+J0 Jo N]/~:; M 1/2 dy L\  Uo 

_-1 r d I do,(x) ¢pm(y) a [u~0 ] 
C~JoJ0 N]/2 M'22 Oy C dxdy. (20) 

Substituting the inversion formula (14b) into the 
integrals of equation (20), an infinite system of 
coupled linear ordinary differential equations for the 
transformed potentials, Cim, is obtained. For  com- 
putational purposes, this system is truncated at the 
Nth row and col amn, with N sufficiently large for the 
required convergence criterion. The truncated system 
is then written a,;: 

dC~(t) N 
--]:1--[-- + ~ b~pCp(t) = 0 (21a) 

p=l  

Ck(O) = -J,kCinjd k = 1,2 . . . . .  N (21b) 

where bkp are the elements of the coefficients matrix 
B, as assembled from equation (20) above. 

The simplified dispersion tensor allows for the 
determination of the elements of matrix B in closed 
analytical form [9] ; otherwise, numerical quadrature 
with controlled accuracy should be employed, without 
any major drawback for employing the present 
approach. 

Following the notation in system (21), each k is 
associated with a pair (i, m). The inversion formula 
(14b) is composed of double sums. Instead of trun- 
cating both sums in N terms, the double sums are 
converted into a single sum, taking into account the 
more representative transformed potentials. It is not 
possible to know a priori how such potentials decay, 
but it is reasonable to assume that this decay is governed 
mainly by the functional form exp [ - (#~+2~) t ] ,  
allowing for an ordering scheme based on the values 
of the sum (tt] + 2~m). 

It can be shown [9] that, in system (21), only the 
equations with i and m both even or both odd produce 
non-zero transformed potentials. Additionally, C~m = 
C,,~, which allows for the elimination of redundant 
equations in system (21). 

Since the characteristic velocity, u0, is not present in 
the auxiliary pro blems, it suffices to adopt an average 
absolute value over the whole domain. 

System (21) can be solved analytically [12] as 

N 
C(t) = Y' ate-~,'~ (~) (22) 

1=1 

where v~ is the lth eigenvalue and ~(t) the corresponding 
eigenvector of matrix B. The transformed initial con- 
dition (21 b) dictates the values of the expansion con- 
stants a~, as follows, 

N 
a,~ (l) = C(0). (23) 

t=l 

To determine the eigenvalues v~, eigenvectors ~(t) and 
coefficients a~, specialized routines for matrix eigen- 

value problems, like those encountered in the IMSL 
Library [13], may be used. 

The procedure above is related to the continuous 
tracer injection problem. For  tracer slug injection, it 
can be shown [9] that it suffices, for t > tinj, to recal- 
culate the ats, where the new transformed initial con- 
dition is given by Cls.k(0) = Ck(tmj)- (Tk(0). Another 
option is to solve by superposition, i.e. C,s(X,y, t) = 
Cl(X,y,t) for t <~ ti,j and Cls(X,y,t) = Cl(x,y,t) 
-C~(x ,y , t - t i , j )  for t > ti,j. 

Although equations (22) and (23) represent a gen- 
eral solution, for any position within the domain, the 
practical interest is focused on the effluent con- 
centration profiles (i.e. at the production wells). In 
this case, it is possible to improve the convergence 
rates of the eigenfunction expansions by applying an 
integral balance approach [9], as follows : 

Oh u 
Cprod(/)  = ~ q d _ _ ~  l f f l v l e - V , ' ( ]  t). (24) 

For  continuous tracer injection or for tracer slug injec- 
tion with t ~< t~nj, C~,j must be added to equation (24), 
according to the separation proposed in equation (10). 
For  tracer slug injection with t > ti,j, relation (24) 
furnishes the concentrations directly. 

RESULTS AND DISCUSSION 
A literature review indicates that there is no com- 

plete analytical solution yet available to problem (7). 
However, some approximate analytical or purely 
numerical solutions were identified. Additionally, 
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Fig. 2. Comparison of integral transform results, for increas- 
ing Peclet number, against asymptotic solution for Pe = oo. 
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comparisons can be made against asymptotic ana- 
lytical solutions. 

As a first check, the diffusivity c~ can be reduced 
successively, leading the present formulation to 
approach the purely hyperbolic problem, which has a 
known analytical solution [5]. Figure 2 shows these 
successive profiles and the comparison with this 
asymptotic solution. The Peclet number (Pe) relates 
the convective and the dispersive contributions to the 
tracer transport and, for this problem, Pe = a/c~ was 
adopted as a definition. In Fig. 2, dimensionless con- 
centration [ C I D  = C 1 (0, 0, t)/Ci,j = Cl(d ,  d, t ) / C i j  is 
plotted against dimensionless time (pore volume 
injected, t D = 2 q t / ~ h ) ,  and the GITT results show 
a consistent agreement with the asymptotic solution 
for Pe ~ oo. 

Another check is to proceed in the opposite direc- 
tion, towards the purely diffusive problem, i.e. reduc- 
ing the Pe  number towards zero. The solution for 
Pe = 0 may be obtained through physical argu- 
mentation. In this extreme case, all tracer mass intro- 
duced via the production wells is immediately uni- 
formly distributed over the whole domain, i.e. the 
concentration in all points is the same and is only 
a function of time. Therefore, the definition of the 
dimensionless average concentration, CmD, 

0.50 

0 . 4 0  

Z 
o 

0 . 3 0  

Z 
o 

o z 0.20 

Z 

o.10 

_ _ _  P e = 1 0  
_ __  P e = l  
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/ / /  
/ 
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/ 
/ 

/ 
/ 

/ 
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o.oo - - t 
0.00 0.10 0.50 

Fig. 3. Comparison of integral transform results, for decreas- 
ing Peclet number, against asymptotic solution for Pe = O. 

fo DCm CmD(tD) = tD-- D(tD) dtD (25) 

can be used to solve for CmD( tD)  , yielding, for the 
present initial condition, CmD(0) = 0, 

CmD(tD) = 1--e to. 

Figure 3 shows concentration profiles for suces- 
sively lower Pe and the comparison with solution (26), 
again with excellent agreement against the integral 
transform results for very low Peclet number. 

The most important approximate analytical solu- 
tion, to a problem similar to the present one, was 
developed by Abbaszadeh-Dehghani [5, 6], utilizing a 
so-called streamlines approach. The dispersion (only 
longitudinal) was treated in a more rigorous manner 
than here and various patterns (five-spot included) 
were studied. Unfortunately, Abbaszadeh-Dehghani's 
solution furnishes the concentration profiles only in 
the production wells, for Pe > 100 and undefined 
short tracer slugs. In Fig. 4, the GITT solution (for 
a 1% tracer slug) is compared with Abbaszadeh- 
Dehghani's results, for four values of Pe. The con- 
centration is normalized as [5] 

c ~ ( t ) -  Cprod(t) 
CinjfvpJPe" 

Figure 4 shows that the results do not fully coincide, 
possibly since a simplified dispersion tensor is being 
considered in the present analysis, but the overall 
agreement is quite good, indicating that the error 

introduced by the simplified tensor is not significant. 
One can observe that the difference between the two 
solutions increases as the Peclet number (Pe) is 
decreased, which was expected, since a lower Pe  means 
a relatively greater importance of the dispersion 

(26) phenomena. 
Now, for comparison purposes with finite difference 

solutions, two representative schemes were adopted, 
namely, the nine-point exponential scheme [14, 15] 
and the third-order TVD scheme with Sweby's region 
[16, 17]. The calculations were performed with a 
15 x 15 diagonal grid in both cases [9]. 

Figure 5 shows the behavior of the selected numeri- 
cal schemes against the GITT solution for Pe = 500 
and continuous tracer injection. The presence of 
numerical diffusion in the nine-point exponential 
scheme and the good agreement with the third-order 
TVD scheme are clear from this plot. In Fig. 6, a 
similar comparison is made for Pe  = 100. In this case, 
both finite difference schemes results are closer to the 
present analytical solution, and the numerical 
diffusion effects are less significant. Table 1 illustrates 
the convergence behavior of the GITT solution for 
the continuous tracer injection problem and Pe  = 100. 
Table 2 additionally furnishes, for benchmark 

(27) purposes, the fully converged results for continuous 
injection, with Pe  = 10 or Pe  = 500. 

Finally, Fig. 7 compares analytical and numerical 
concentration profiles along the injection well-pro- 
duction well line for a dimensionless time equivalent to 
50% of pore volume injected and various Pe  numbers. 
Table 3 shows the numerical values corresponding to 
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1 5 -  

ooooo Pe=250 
N n o v o a  P e r 5 0 0  

. - -  a aat,,~ P e = 1 0 0 0  
***** P e = 2 0 0 0  
_ _  GITT 
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r.r.l 

o 

~ 5 
r,r.l 

o 
Z 

0 i , ' ' ' I ' ' 

0 . 0 0  0 . 5 0  1 .00  1 .50  
PORE VOLUME INJECTED 

Fig. 4. Comparison of integral transform results, for different Pe numbers, against the approximate 
analytical solution of Abbaszadeh-Dehghani [5, 6]. 

these profiles. Tile difficulty of the numerical scheme 
in perfectly defining the wave front is noticeable in 
Fig. 7, especially at lower Peclet numbers. 

The integral transform approach opens new per- 
spectives in the area of petroleum reservoir engin- 
eering. The present application was shown to be quite 
inexpensive for Pe numbers up to 150. For  Pe numbers 
higher than 500: the increase in computational cost 
(CPU time and memory) is, however, justified for 

benchmark purposes or when accuracy is at a 
premium. Nevertheless, some techniques for con- 
vergence acceleration of the eigenfunction expansions 
can be employed to alleviate this behavior [10, 11], 
the most promissing being filtering techniques and the 
use of a convective auxiliary problem. 

Although for this first demonstration of the integral 
transform method in petroleum reservoir engineering 
a classical problem with several assumptionl  was 
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Fig. 5. Comparison of integral transform results against finite difference schemes [14-17], for Pe = 500. 
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Table 1. Convergence behavior o f G I T T  solution for cont inuoust racer in ject ion and 
Pe = 100 

N 

t o 20 40 80 160 320 640 1280 

0.50 0.019 0.012 0.011 0.011 0,011 0.011 0.011 
0.60 0.079 0.075 0.076 0.076 0.076 0.076 0.076 
0.70 0.209 0.219 0.218 0.219 0.219 0.219 0.219 
0.80 0.380 0.389 0.389 0.389 0.389 0.389 0.389 
0.90 0.541 0.535 0.536 0.536 0.536 0.536 0,536 
1.00 0.663 0.648 0.647 0.647 0.647 0.647 0.647 
1.10 0.740 0.730 0.728 0.728 0.727 0.727 0.727 
1.20 0.787 0.787 0.787 0.786 0.786 0.786 0.786 
1.30 0.822 0.829 0.831 0.831 0.831 0.831 0.831 
1.40 0,858 0.864 0.866 0.865 0.865 0.865 0.865 
1.50 0.895 0.894 0.893 0.892 0.892 0.891 0.891 

Table 2. Benchmark results for continuous tracer injection 
and P e  = 10 and 500 : concentration at the production wells 

Peclet number  

ID 10 500 

0.50 0,209 0.000 
0.60 0.308 0.004 
0.70 0.403 0.119 
0.80 0.488 0.383 
0.90 0.563 0.564 
1.00 0.628 0.673 
1.10 0.683 0.747 
1.20 0.729 0.802 
1.30 0.769 0.843 
1.40 0.802 0.875 
1.50 0.831 0.900 

Table 3. Benchmark results for continuous tracer injection 
and Pe = 10, 50 and 200: concentration profiles along the 

line injection well-production well (tD = 0.50)~" 

Dimensionless Peclet number  
position from 

the injection well 10 50 200 

0.00 0.986 0.100(1) 0.100(l) 
0.10 0.972 0.100(1) 0.100(1) 
0.20 0.943 0.100(1) 0.100(1) 
0.30 0.887 0.996 0.100(1) 
0.40 0.798 0.966 0.100(1) 
0.50 0.672 0.843 0.965 
0,60 0.522 0.601 0,642 
0.70 0.377 0.346 0.190 
0.80 0.270 0.174 0.032 
0.90 0.217 0.078 0.006 
1.00 0.209 0.045 0.001 

q" Numbers  in parentheses indicate powers of  10. 
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chosen, there is no major drawback in removing any 
of  them in the context of  a practical application. 
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